|LOGIN |
 
CONTACT |
NEWS |
SITEMAP |
 
 
 
 
 
printmail page
 
Andoya
Boulder
Dumont d'Urville
AT
STROZ
Eureka
Garmisch
Hohenpeissenberg
Huntsville
La Reunion
Lauder
London
Mauna Loa
McMurdo
Ny Ålesund
OHP
Payerne
Rio Gallegos
Potenza
Rome-Tor Vergata
Sondrestrom
Table Mountain
Thule
Tsukuba
Zugspitze
Mobile systems
return to main page
ALVICE
 
 
ALVICE
The ALVICE mobile laboratory contains a suite of instruments with major focus on water vapour measurements. The 40' trailer contains a Raman-Rayleigh-Mie lidar that measures water vapour, aerosol, depolarization, cloud liquid and ice water, rotational-Raman temperature. The trailer contains ground station equipment for launching Vaisla and Intermet radiosondes as well as the Cryogenic Frostpoint Hygrometer. A mobile member of the Suominet network measures total column water and a surface reference station measures NIST traceable temperature, pressure and relative humity (T, P, RH) and has a ventilated chamber for radiosonde pre-launch accuracy studies. The ground station equipment for receiving the NOAA Frostpoint Hygrometer is also present in the trailer.


The laser used is a Continuum 9050 laser with nominal output of 17.5W at 355 nm. Daytime water vapour profiles are available every 3 minutes to an altitude of 4-5 km. Nighttime water vapour profiles extending to the lower stratosphere are possible under clear viewing conditions with several hours of data acquisition.
Measurement campaigns in which the ALVICE system has participated include MOHAVE-II (2007), N_WAVES-2009, MOHAVE-2009, WAVES-2011, WAVES-2012, UWO_2012, WAVES-2013. The home location for the ALVICE system is the Howard University Beltsville Research Campus in Beltsville, MD.

Contact persons are: D.N. Whiteman (GSFC), D. Venable (Howard University), M. Cadirola (Ecotronics), K. Vermeesch (SSAI), M. Walker (USRA), R. Forno (U. Mayor de San Andres).

Selected publications
Whiteman, D. N., Demetrius D. Venable, Monique Walker, Martin Cadirola, Tetsu Sakai and Igor Veselovskii: Assessing the Temperature Dependence of Narrow-Band Raman Water Vapor Lidar Measurements – A Practical Approach, Applied Optics Vol. 52, Iss. 22, pp. 5376–5384, 2013.

Whiteman, D. N., Cadirola, M., Venable, D., Calhoun, M., Miloshevich, L., Vermeesch, K., Twigg, L., Dirisu, A., Hurst, D., Hall, E., Jordan, A., and Vömel, H.: Correction technique for Raman water vapor lidar signal-dependent bias and suitability for water vapor trend monitoring in the upper troposphere, Atmos. Meas. Tech., 5, 2893-2916, doi:10.5194/amt-5-2893-2012, 2012.

Whiteman, D. N., K. C. Vermeesch, L. D. Oman, and E. C. Weatherhead: The relative importance of random error and observation frequency in detecting trends in upper tropospheric water vapor, J. Geophys. Res., 116, D21118, doi:10.1029/2011JD016610, 2011.

Whiteman, D. N., D. Venable, E. Landulfo: Comments on “Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements”, Applied Optics Vol. 50, Iss. 15, pp. 2170–2176, 2011.

Whiteman, David N., Kurt Rush, Scott Rabenhorst, Wayne Welch, Martin Cadirola, Gerry McIntire, Felicita Russo, Mariana Adam, Demetrius Venable and Rasheen Connell, Igor Veselovskii, Ricardo Forno, Bernd Mielke and Bernhard Stein, Thierry Leblanc and Stuart McDermid and Holger Vömel: Airborne and Ground-based measurements using a High-Performance Raman Lidar, doi:10.1175/2010JTECHA1391.1, 2010.
 
 
 
 
         
                                                               

19 September 2016